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Abstract
The multiplet structures of tetrahedrally coordinated Cr4+ in the three silicate
crystals Mg2SiO4 (forsterite), Ca2MgSi2O7 (åkermanite), and Y2SiO5 (yttrium
orthosilicate (YSO)) were calculated by the many-electron electronic structure
calculation method developed by the authors. The method is a hybrid of
the molecular orbital method based on the density functional theory and
the configuration interaction approach. For every crystal, the calculations
were conducted by using cluster models with the three sizes: (A) (CrO4)4−

(without point charges) models, (B) (CrO4)4− (with point charges) models,
and (C) (CrMg9Si2O37)44− (forsterite), (CrCa6Mg2SiO38)52− (åkermanite),
and (CrY8O37)46− (YSO) models. The calculated multiplet energies of the
triplet states agreed with the experimentally obtained peak energies in the
absorption spectra in the literature. The theoretical spectra showed polarization
dependence of the peak intensity. The best agreement was found in the results
obtained from the largest models C. The difference in polarization dependence
between Cr4+:forsterite and Cr4+:åkermanite was related to the different mixing
of the many-electron wave functions as regards the 3T2(et2) and 3T1(et2)

triplet terms. The covalency of the impurity-level molecular orbitals was also
analysed. The results of models C indicated that the wave functions of the
atoms outside the CrO4 tetrahedron should not be neglected. Both the degree
of covalency and the correlation-correction factor, which was introduced in
the method, were regarded as reduction factors of two-electron repulsion. The
two factors were multiplied together, and the reduction factor was a convenient
indicator for simply evaluating the magnitude of the reduction. The traditional
nephelauxetic parameter was obtained as 0.49. Some empirical values given
recently in the literature were confirmed to have appropriate magnitude.

0953-8984/01/255757+28$30.00 © 2001 IOP Publishing Ltd Printed in the UK 5757
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1. Introduction

Cr4+-doped crystals have been studied as regards their use as solid-state laser materials since
the laser action in Cr4+:Mg2SiO4 (forsterite) was first reported [1]. The history of Cr4+ lasers
up to the present is summarized in reference [2]. It has proved difficult to understand the optical
absorption spectra in the spectral region from the near-infrared (NIR) to the visible. The main
source of the difficulty lay in the frameworks of the theoretical methods. Most traditional
methods for the analysis of the absorption spectra produced by transition-metal impurities
have been based on ligand-field theory [3], which requires one to make various assumptions
in order to determine the adjustable parameters. Even if one makes an invalid assumption, one
can often explain the origin of the absorption spectra by arbitrarily adjusting the parameters.

To avoid ambiguity in determining the parameters, we have to depend on ab initio methods.
Until now, however, applications of ab initio electronic structure calculation methods to
solid-state laser crystals have been limited, although the number of studies focused on the
determination of the structure and the thermal properties of minerals has been increasing. To
calculate the electronic structures of host crystals, Xu and Ching, and Xu, Ching, and Brickeen
successfully conducted band calculations for garnet crystals [4,5], whose unit cells were huge,
with 160 atoms. However, since the band method is based on a one-electron approximation, we
cannot directly discuss the impurity states that appear as a multiplet structure, requiring a many-
electron calculation. As for the multiplet structures of Cr4+-doped system, Wissing et al and
Deghoul et al conducted molecular orbital calculations on Cr4+:forsterite and Cr4+:Ca2GeO4,
and on Cr4+:LiNbGeO5, respectively [6, 7]. Their procedure, however, was fundamentally
based on the matrix elements obtained by the traditional ligand-field theory, which restricted
the applicable symmetry. So they could give the mean energies of the multiplet terms in a
hypothetical Td symmetry, but could not obtain the energy splittings that were produced by
low symmetries, which were of significant interest.

We have been developing a general ab initio method, the discrete variational multi-
electron (DVME) method [8], for direct calculation of multiplet structures, independently of the
traditional ligand-field theory. In this paper, we report the results obtained from calculations of
the multiplet structures of tetrahedrally coordinated Cr4+ in Mg2SiO4 (forsterite), Ca2MgSi2O7

(åkermanite), and Y2SiO5 (YSO) silicate crystals. We confirm that every polarization
dependence of the peak intensity was reproduced by the calculations, without using any
adjustable parameters for that purpose. From the examination of the dependence of the size of
the cluster models, we show that the wave functions of the atoms outside the CrO4 tetrahedra
should always be considered when we discuss not only the peak energy but also the peak
intensity. Finally, the so-called nephelauxetic parameter is calculated, and the magnitudes of
some values given in the literature are validated.

2. Method

2.1. Computational procedure

First, in the computational procedure of the DVME method, a one-electron molecular orbital
(MO) calculation by means of the SCAT code [9] is conducted. The method is based on the
density functional theory, and the exchange potential is Xα [10], whose constant α is set at 0.7
as the standard value. We could apply other exchange potentials based on the local spin-density
approximation, but it has already been confirmed that the result would be essentially the same
as that obtained by using the Xα-potential [8]. The self-consistent calculation is conducted
with the use of a cluster model, in which the crystal structure and the symmetry are included.
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The pth MO ϕp is expressed as a linear combination of atomic orbitals χ , such as:

ϕp(r) =
∑

q

cpqχq(r) (1)

where r is the position of the electron, and cpq is the coefficient of the linear combination. The
atomic orbitals used in this study were 1s–4p for chromium (Cr), 1s–2p for oxygen (O), 1s–3d
for silicon (Si), 1s–3d for magnesium (Mg), 1s–4p for calcium (Ca), and 1s–5p for yttrium (Y).

Once we have obtained the one-electron MO energy and the MO, we take only the impurity-
level MOs that are mainly composed of transition-metal d orbitals, with N electrons. The ith
wave function i of the N -electron system (dN many-electron system) is constructed as a
linear combination of Slater determinants �, such as:

i(r1, r2, . . . , rN ) =
s∑

j=1

Cij �j (r1, r2, . . . , rN )

�j (r1, r2, . . . , rN ) = 1√
N !

∣∣∣∣∣∣∣∣

ϕj1(r1) ϕj2(r1) · · · ϕjN (r1)

ϕj1(r2) ϕj2(r2) · · · ϕjN (r2)
...

...
...

...

ϕj1(rN ) ϕj2(rN ) · · · ϕjN (rN )

∣∣∣∣∣∣∣∣

(2)

where s is the total number of Slater determinants, and Cij is the coefficient of the linear
combination. All the configuration interactions relating to the so-called d–d transition are
fully considered. The effective Hamiltonian Heff of the N -electron system is written in atomic
units as

Heff(r1, r2, . . . , rN ) =
N∑

i=1

{
−1

2
∇2

i −
∑

ν

Zν

|ri − Rν | + V0(ri )

}
+

N∑
i=1

N∑
j>i

1

|ri − rj | (3)

where the term in the first brackets is the one-electron operator term and the last term is
the two-electron operator term. In the one-electron operator term, the first and the second
terms express the kinetic energy and the electron–nuclei (with the atomic number Z) attractive
potential for the N electrons, respectively. The potential V0 includes the Coulomb and the
exchange potentials between the N electrons and the core-and-valence electrons.

To calculate the potential V0, the following explicit formula, proposed by Watanabe and
Kamimura [11], is adopted:

V0(ri ) =
∫

ρ0(r)

|ri − r| dr +
3

4

ρtot(ri )Vxc[ρtot(ri )] − ρ0(ri )Vxc[ρ0(ri )]

ρimp(ri )
− Vxc[ρimp(ri )] (4)

where ρtot, ρ0, and ρimp are the electron densities of all of the occupied MOs, the core-
and-valence MOs, and the impurity-level MOs, respectively. And the potential Vxc is the
exchange Xα-potential. This potential V0 analytically expresses the interelectron interaction
excluding the repulsion among the N electrons. Although the explicit formula expresses well
the polarization dependence of the absorption spectra, it was revealed that some overestimation
of the calculated energy could not be removed. We consider that the overestimation will be
reduced when we construct larger Slater determinants, including the valence MOs. In the
present study, however, we introduce two approaches to correct the overestimation simply. One
is the configuration-dependent correction (CDC) approach, and the other is the configuration-
independent correction (CIC) approach. The CDC approach had been already introduced in
our previous study [8]. In the CDC approach, we need to classify the multiplet structure into
several electron configurations. In the case of the Cr4+ ion in Td symmetry, the impurity levels
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split into two states with e and t2 symmetries. We can define an effective ligand-field splitting
�eff from an energy difference between the two states, such as:

�eff = ε(t2) − ε(e) (5)

where ε is the MO energy, and the overline means taking an average value when the
degenerate states further split into several states in symmetry lower than Td. Then the electron
configurations are emtn

2 ; (m, n) = (2, 0), (1, 1), (0, 2), and their mean energies are obtained as

n�eff . (6)

In the CDC approach, the values of the diagonal matrix elements are shifted before
the diagonalization so that the mean energy of every electron configuration is consistent
with equation (6). If we knew the electron configuration, the correction could be done
straightforwardly within the computational procedure, without introducing any adjustable
parameters for correction. Thus, the framework of the CDC approach does not destroy the
ab initio status of the DVME method. On the other hand, the CIC approach introduces a
scaling factor, by which all of the matrix elements of the one-electron operator term are
universally reduced. The scaling factor affects the magnitude of the ligand-field splitting,
and can be selected so as to give an energy position equivalent to that of the CDC approach.
In this study, however, we selected the magnitude of the scaling factor so as to reproduce
the peak position of the experimentally obtained spectra, and the constant value 0.65 was
universally applied throughout the calculations. Although the scaling factor in this study
was introduced as an adjustable parameter, it is introduced only to correct the overall
overestimation of the calculated energy, and it does not crucially affect the calculated intensity
and the polarization dependence, which are the important factors in a system with low
symmetries.

The two-electron operator term in equation (3) expresses the Coulomb repulsion between
N electrons in the impurity-level MOs. In the DVME method, the calculation of the two-
electron integrals is done numerically, not analytically, with the use of impurity-level MOs
such as:

C

�∑
r=1

�∑
s>r

ϕi(rr )ϕj (rs)
1

|rr − rs |ϕk(rr )ϕl(rs)ω(rr )ω(rs) (7)

where ω is the weighted volume at each sample point r, and � is the number of sample
points. The factor C, which is not an empirical parameter, is explained shortly. The numerical
procedure makes it possible to apply the method universally to any symmetry and to any
electron configuration. In the case of Cr4+, the actual number of combinations of integrals
〈ij |kl〉 is 140. In the traditional semiempirical methods based on the ligand-field theory,
however, these integrals are usually reduced to just one adjustable Racah parameter B. At the
last stage in the computational procedure of the DVME method, the energies and the wave
functions of the N -electron system are obtained by diagonalization of the matrix of the effective
many-electron Hamiltonian.

The Coulomb repulsion between the N electrons should be overestimated due to the
insufficient consideration of the electron correlation effect, since the number of Slater
determinants is finite. To include the electron correlation effect, the two-electron integrals
in equation (7) are multiplied by a correlation-correction factor C, which is straightforwardly
determined by a spin-polarized MO calculation. The factor C is selected so as to achieve
consistency between the spin-flip transition energy �ε, calculated by a one-electron calculation
within the transition-state method proposed by Slater [12], and the corresponding transition
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energy �E, estimated by the N -electron calculation. In the case of the Cr4+ state in Td

symmetry, the condition is written as

E[1E,1 A1,3 A2(e↑e↓)] − E[3A2(e2
↑)] = �ε(e1.5

↑ e0.5
↓ ). (8)

The reduction of the electron repulsion in solids compared to isolated ions has been called the
nephelauxetic effect. In the DVME method, the covalency which is expressed by the mixing
of atomic orbitals, and the correlation-correction factor C are the factors used to reduce the
electron repulsion.

To obtain a theoretical absorption spectrum, the oscillator strength of the electric dipole
transition If i is calculated from

If i = 2(Ef − Ei)

∣∣∣∣∣
∫

· · ·
∫

∗
f

N∑
j=1

rj · E

|E|i dr1 dr2 · · · drN

∣∣∣∣∣
2

(9)

where the subscripts i and f mean the initial and the final states, respectively, Ei and Ef

are their energies, and E is the electric field of the incident light. A theoretical spectrum is
obtained by applying the oscillator strength to the Lorentz resonance curve with a full width at
half-maximum of 325 cm−1. The theoretical spectra are shown just to make it easy to compare
the calculated results with the experimentally obtained absorption spectrum.

2.2. Cluster models

The data on the crystal structures of Mg2SiO4 (forsterite) [13], Ca2MgSi2O7 (åkermanite) [14],
and Y2SiO5 (YSO) [15] host crystals are summarized in table 1. Since the three crystals
belong to different crystal systems, each anisotropy produces the corresponding polarization
dependence of the absorption spectra. All of the crystals possess distorted SiO4 coordination
tetrahedra, whose Si–O bond lengths differ from each other. The symmetries at the Si sites
are Cs in forsterite and åkermanite, and C1 in YSO, reduced from Td symmetry. In all of the
crystals, the prominent structures of the absorption spectra have been supposed to originate
from the tetrahedrally coordinated Cr4+ that replaced the Si atom, although in forsterite, for
example, octahedrally coordinated Cr3+ coexists with it [16].

Table 1. The crystal structures of forsterite, åkermanite, and YSO.

Forsterite (Mg2SiO4) Åkermanite (Ca2MgSi2O7) YSO (Y2SiO5)

Crystal system Orthorhombic, P bnm Tetragonal, P 4̄21m Monoclinic, C2/c

a (Å) 4.756 7.8335 10.410
b (Å) 10.207 6.721
c (Å) 5.980 5.0025 12.490
β (deg) 90 90 102.39

Symmetry at Si site Cs Cs C1

Si–O(1) (Å) 1.615 1.597 1.623
Si–O(2) (Å) 1.635 1.623 1.633
Si–O(3) (Å) 1.653 1.658 1.629
Si–O(4) (Å) 1.655

In this paper, we concentrate on the electronic structures of the tetrahedrally coordinated
Cr4+ in forsterite, åkermanite, and YSO crystals. The geometries of the cluster models for
the three crystals are drawn in figures 1, 2, and 3. For each crystal, we used three cluster
models, A, B, and C, to examine the dependence of the size of the models on the calculated
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b
c

a

Si

Mg

(b)

CrO4

O(1)

O(2)

Cr

b c

a

(a)

O(3)

Figure 1. The geometry of the cluster models for Cr4+:forsterite. (a) (CrO4)4− models A and
B, and (b) (CrMg9Si2O37)44− model C. In models B and C, additional point charges with formal
valences are placed at the atomic sites outside the clusters to reproduce the effective Madelung
potential. The symmetry at the centre Cr atoms is Cs.

O(1)

O(2)

Cr

a

a

c

O(3)

(a) a

c

Si

Mg

(b)

a

Ca
CrO4

Figure 2. The geometry of the cluster models for Cr4+:åkermanite. (a) (CrO4)4− models A and B,
and (b) (CrCa6Mg2SiO38)52− model C. In models B and C, additional point charges with formal
valences are placed at the atomic sites outside the clusters to reproduce the effective Madelung
potential. The symmetry at the centre Cr atoms is Cs.

multiplet structures. The (CrO4)4− models A were simply cut out from the crystal structures,
centred at the Si atom, which was substituted for with a Cr atom. The difference in the
crystal structures is expressed only by the different Cr–O bond lengths and � O–Cr–O bond
angles. The four O atoms in the forsterite and åkermanite models were classified into three
sites; on the other hand, all four O atoms were different in YSO. The numbers labelling
each O atom in figures 1, 2, and 3 correspond to those in table 1. The (CrO4)4− models B
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O(1)

O(2)

Cr
ab

c
O(4)

O(3)

(a)

b

c

(b)

a

Y
CrO4

Figure 3. The geometry of the cluster models for Cr4+:YSO. (a) (CrO4)4− models A and B, and
(b) (CrY8O37)46− model C. In models B and C, additional point charges with formal valences are
placed at the atomic sites outside the clusters to reproduce the effective Madelung potential. The
symmetry at the centre Cr atoms is C1.

possessed the same atoms as models A, and were extended to reproduce the effective Madelung
potentials, by placing additional point charges with formal valences at the atomic sites outside
the five atoms within the spatial region of 6 × 6 × 6 unit cells. The Mg, Si, Ca, Y, and
O atoms outside the CrO4 tetrahedron were approximated by +2, +4, +2, +3, and −2 point
charges, respectively. The size of models A and B with five atoms corresponds to the size
of the models that have been considered in the traditional ligand-field theory. The models C,
(CrMg9Si2O37)44− for forsterite, (CrCa6Mg2SiO38)52− for åkermanite, and (CrY8O37)46− for
YSO, were further extended from the models B by adding atoms around the CrO4 tetrahedra.
The four O atoms around the Cr atom (ligand O atoms) were completely shared by the first-
shell-cation coordination polyhedra. In the forsterite model, the two Si atoms did not directly
share the ligand O atoms.

3. Results and discussion

3.1. One-electron MO calculation

3.1.1. One-electron MO energies. The calculated one-electron MO energies obtained from
the forsterite, åkermanite, and YSO models are shown in figures 4, 5, and 6, respectively.
The results (a), (b), and (c) correspond to the results obtained from models A, B, and C,
respectively. The lowest Cr 3d levels, which two electrons occupied, were set at zero. The
MOs of the valence band were composed of the O 2p orbitals. The MOs of the unoccupied
levels (conduction bands) were only composed of the Cr 4s and Cr 4p orbitals in the results
obtained from the small models A and B; on the other hand, they were mainly composed
of the other cations’ orbitals in the results obtained from the larger models C. The impurity
levels whose MOs were mainly composed of the Cr 3d orbitals were located between the
O 2p valence band and the conduction bands. The impurity levels in the calculated results
completely split into five levels due to the ligand field with low symmetries. Nevertheless, we
see that the Td-symmetry-like energy structure was still preserved—that is, the lower two MOs
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O-2p

(c)

a’(1)a”(2) a’(3)a”(4)a’(5) Mg-3spd, Si-3spd, Cr-4sp
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Cr-3d

O-2p Cr-4s Cr-4p

O-2p Cr-4s Cr-4p

(b)

(a)

One-electron MO energy (eV)
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a”(1)a’(2) a’(3)a”(4)a’(5)
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a”(1)a’(2) a’(3)a’(4)a”(5)

Figure 4. The calculated one-electron MO energies obtained from the forsterite models A, B,
and C.

a”(1)a’(2) a’(3)a’(4)a”(5)

One-electron MO energy (eV)
–15 –10 0 10–5 5 15 20 25

O-2p

(c)

a”(1)a’(2) a’(3)a’(4)a”(5)
Ca-4sp, Mg-3spd,
Si-3spd, Cr-4sp

Cr-3d

e t2
Cr-3d

O-2p Cr-4s Cr-4p

O-2p Cr-4s Cr-4p

(b)

(a)

a”(1)a’(2) a’(3)a’(4)a”(5)

Cr-3d

Ca-3d

Figure 5. The calculated one-electron MO energies obtained from the åkermanite models A, B,
and C.

originated from the twofold-degenerate e symmetry and the higher three MOs originated from
the threefold-degenerate t2 symmetry. We use this expression in the Td symmetry to clearly
specify the electron configuration. The five impurity-level MOs were taken to construct the
Slater determinants in equation (2).
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One-electron MO energy (eV)
–15 –10 0 10–5 5 15 20 25

O-2p
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Cr-3d

O-2p Cr-4s Cr-4p
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Cr-3d
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Figure 6. The calculated one-electron MO energies obtained from the YSO models A, B, and C.

In the results obtained from the forsterite models with Cs symmetry in figure 4, the five
impurity-level MOs had either a′ or a′′ symmetry (lower-case letters are used for one-electron
calculations). We attached the labels (1)–(5) to those MOs in the order of their energies.
Comparing the results in figure 4 with each other, we see that the order of the impurity-level
MOs changed according to the models. The order of the energies of the a′

(4) and a′′
(5) states

in model A was reversed in model B. The order of the energies of the a′′
(1) and a′

(2) states is
further reversed as we go on to the result obtained from model C. As for the dependence of the
magnitude of the energy splittings on the models, we find that the dependence of the energy
splitting between the a′ and a′′ states originating from the e symmetry was negligibly small
(�0.03 eV); on the other hand, the dependence of the energy splitting of the states originating
from the t2 symmetry was large (�0.27 eV). As a result, the overall structures of the impurity
levels obtained from models B and C were similar, but did not resemble that obtained from
model A. In the result obtained from model C, the conduction band was mainly composed of
Mg 3s, Mg 3p, Mg 3d, Si 3s, Si 3p, and Si 3d orbitals. In this case, the impurity-level MOs
are expected to be composed not only of the O 2p orbitals but also of those cations’ orbitals.

In the results obtained from the åkermanite models with Cs symmetry in figure 5, the
order of the MOs according to their energies was a′′

(1), a′
(2), a′

(3), a′
(4), and a′′

(5), independently of
the model. The energy splitting between the a′

(3) and a′
(4) states was small, 0.03 eV, in model

A, but large, 0.45 eV and 0.31 eV, respectively, in models B and C. Here again, the overall
energy structures of the impurity levels obtained from models B and C showed a resemblance,
but were different from that obtained from model A. The O 2p valence band obtained from
model B had a larger bandwidth compared to that obtained from model A. This indicates
that the effective Madelung potential in model B further enhanced the difference between the
potentials on the O atoms. In the result obtained from model C, the conduction band was
mainly composed of Ca 3d, Ca 4s, Ca 4p, Mg 3s, Mg 3p, Mg 3d, Si 3s, Si 3p, and Si 3d
orbitals. The lowest-energy region was dominated by the Ca 3d orbitals, which are expected
to affect the multiplet structure.
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The calculated results obtained from the YSO models are shown in figure 6. Since the
symmetry at the Cr site was the lowest, C1, the impurity levels had only the symmetry a, and
the MOs are denoted as a(1), a(2), a(3), a(4), a(5) in order of their energies. In this case, all of
the impurity levels showed similar energy splittings in the three models. In the result obtained
from model C, the conduction band was mainly composed of Y 4d, Y 5s, Y 5p, Si 3s, Si 3p,
and Si 3d orbitals. The lowest region was mainly composed of the Y 4d orbitals, which are
expected to join the impurity-level MOs.

3.1.2. The covalency of impurity-level MOs. Covalency is an important factor when we
analyse the multiplet structure that was produced by impurity centres. The covalency of
impurity-level MOs was evaluated by the population-analysis method proposed by Mulliken
[17]. The contribution of atomic orbitals to the MOs was numerically analysed by summarizing
the coefficients cpq in equation (1), and the results are shown in tables 2, 3, and 4, for the
forsterite, åkermanite, and YSO models, respectively. The results were classified into the
contributions of Cr 3d, Cr (4s + 4p), ligand O 2s, O 2p, and of all the other cations’ orbitals
making up the conduction bands (except the Y 4p orbitals). The results for the ligand O 2p
orbitals were further classified into the contributions of the three (forsterite and åkermanite) or
the four (YSO) different O atoms. The contributions of the first-shell-cation orbitals obtained
from the larger models C were summarized from all of the atoms making up the clusters, but
the contributions of the O atoms outside the CrO4 tetrahedra are not shown in the tables.

Table 2. The result of Mulliken population analyses obtained from the forsterite models.

Ligand O

Cr 2p
Mg Si

Model MO 3d 4s + 4p 2s O(1) O(2) O(3) Total 3s + 3p + 3d 3s + 3p + 3d

A a′′
(1)(e) 0.85 0.00 0.00 0.02 0.08 0.05 0.15

a′
(2)(e) 0.85 0.00 0.00 0.03 0.09 0.04 0.15

a′
(3)(t2) 0.72 0.07 0.01 0.08 0.07 0.06 0.20

a′
(4)(t2) 0.70 0.08 0.01 0.04 0.09 0.08 0.21

a′′
(5)(t2) 0.70 0.08 0.01 0.04 0.16 0.02 0.21

B a′′
(1)(e) 0.86 0.00 0.00 0.03 0.07 0.04 0.14

a′
(2)(e) 0.86 0.00 0.00 0.04 0.08 0.02 0.14

a′
(3)(t2) 0.72 0.06 0.01 0.10 0.09 0.02 0.21

a′′
(4)(t2) 0.71 0.07 0.01 0.04 0.16 0.01 0.21

a′
(5)(t2) 0.73 0.06 0.01 0.03 0.08 0.10 0.20

C a′
(1)(e) 0.82 0.00 0.00 0.03 0.08 0.03 0.14 0.04 0.00

a′′
(2)(e) 0.82 0.00 0.00 0.02 0.08 0.05 0.15 0.03 0.00

a′
(3)(t2) 0.67 0.06 0.01 0.08 0.08 0.03 0.19 0.07 0.00

a′′
(4)(t2) 0.67 0.07 0.01 0.03 0.15 0.01 0.19 0.05 0.00

a′
(5)(t2) 0.69 0.06 0.01 0.02 0.08 0.09 0.20 0.04 0.00

From the results, we see that the primary component of the impurity-level MOs was the
Cr 3d orbitals, and the O 2p orbitals mixed with them. Usually, the electron configuration
of a Cr4+ ion is simply denoted as d2 in atomic notation. However, the results mean that the
electron configuration is better written explicitly as CrO4−

4 . The decrease of the proportions of
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Table 3. The result of Mulliken population analyses obtained from the åkermanite models.

Ligand O

Cr 2p
Ca Mg Si

Model MO 3d 4s + 4p 2s O(1) O(2) O(3) Total 3d + 4s + 4p 3s + 3p + 3d 3s + 3p + 3d

A a′′
(1)(e) 0.85 0.00 0.00 0.05 0.02 0.08 0.15

a′
(2)(e) 0.85 0.00 0.00 0.04 0.03 0.08 0.15

a′
(3)(t2) 0.68 0.10 0.01 0.12 0.04 0.06 0.21

a′
(4)(t2) 0.73 0.06 0.01 0.03 0.07 0.10 0.20

a′′
(5)(t2) 0.70 0.08 0.01 0.01 0.04 0.16 0.21

B a′′
(1)(e) 0.85 0.00 0.00 0.02 0.03 0.10 0.15

a′
(2)(e) 0.85 0.00 0.00 0.02 0.05 0.08 0.15

a′
(3)(t2) 0.74 0.08 0.02 0.05 0.05 0.07 0.17

a′
(4)(t2) 0.70 0.07 0.00 0.01 0.10 0.11 0.22

a′′
(5)(t2) 0.69 0.08 0.01 0.00 0.06 0.16 0.23

C a′′
(1)(e) 0.82 0.00 0.00 0.03 0.08 0.03 0.14 0.02 0.01 0.01

a′
(2)(e) 0.81 0.00 0.00 0.04 0.08 0.02 0.14 0.03 0.01 0.01

a′
(3)(t2) 0.65 0.08 0.02 0.04 0.07 0.06 0.16 0.06 0.01 0.02

a′
(4)(t2) 0.62 0.07 0.00 0.09 0.09 0.02 0.19 0.09 0.01 0.01

a′′
(5)(t2) 0.63 0.08 0.01 0.06 0.14 0.01 0.20 0.05 0.03 0.00

the contribution of the Cr 3d orbitals can be regarded as a degree of covalency. We see from
the results that the contribution of the Cr 3d orbitals to the MOs originating from e symmetry
was 0.11–0.23 larger than the contribution to the MOs originating from t2 symmetry. This
difference generally forced the traditional semiempirical methods to introduce an additional
adjustable parameter.

In the case of Cr4+ in Y3Al5O12 (YAG), we had obtained the contributions of the Cr 3d
orbitals, 0.80–0.87 for e symmetry and 0.70–0.76 for t2 symmetry, and the difference between
the e and t2 symmetries was 0.07–0.13 [18]. Comparing with the results on Cr4+:YAG, we
found that the contribution of the Cr 3d orbitals in the three silicate crystals in this study lay in
the same range for MOs originating from e symmetry, but was smaller by 0.04 on average for t2
symmetry. This smaller value is ascribed to the neglect of the lattice relaxation around the Cr4+

ion that was substituted for the Si4+ ion with a smaller ionic radius. In the case of Cr4+:YAG,
the relaxation could fortunately be considered negligible because the substituted Al3+ ion had
almost the same ionic radius as the Cr4+ ion. We should note that the covalency was a little
overestimated in this study, since the bond lengths in the cluster models were smaller than they
should be. As a result, the calculated positions of the impurity levels in the band gap, shown in
figures 4–6, would be highly overestimated. Nevertheless, we consider that the overestimation
of the covalency is less important than the apparent differences between the absorption spectra,
such as the polarization dependence produced by the different crystals.

Comparing the results obtained from the forsterite and åkermanite models A in tables 2
and 3, we find that the tendencies of the contributions of the 2p orbitals of the O(1), O(2),
and O(3) atoms were not the same. This might seem strange, because the Cr–O bond lengths
increased in the same order, O(1) < O(2) < O(3). Also the differences in bond angles have
affected the covalency. We consider such a difference in the covalency to be important.



5768 T Ishii et al

Table 4. The result of Mulliken population analyses obtained from the YSO models.

Ligand O

Cr 2p Y

Model MO 3d 4s + 4p 2s O(1) O(2) O(3) O(4) Total 4d 4p + 5s + 5p

A a(1)(e) 0.85 0.00 0.00 0.04 0.04 0.03 0.04 0.15

a(2)(e) 0.85 0.00 0.00 0.04 0.05 0.03 0.03 0.15

a(3)(t2) 0.72 0.06 0.01 0.05 0.05 0.05 0.06 0.21

a(4)(t2) 0.72 0.07 0.01 0.05 0.04 0.06 0.06 0.21

a(5)(t2) 0.70 0.08 0.01 0.07 0.06 0.05 0.04 0.21

B a(1)(e) 0.86 0.00 0.00 0.03 0.04 0.03 0.04 0.14

a(2)(e) 0.86 0.00 0.00 0.03 0.04 0.04 0.03 0.14

a(3)(t2) 0.74 0.06 0.01 0.04 0.06 0.05 0.05 0.19

a(4)(t2) 0.73 0.06 0.01 0.04 0.05 0.06 0.06 0.20

a(5)(t2) 0.72 0.07 0.01 0.06 0.07 0.04 0.04 0.20

C a(1)(e) 0.81 0.00 0.00 0.03 0.04 0.03 0.04 0.13 0.05 0.01

a(2)(e) 0.80 0.00 0.00 0.03 0.04 0.04 0.03 0.14 0.05 0.01

a(3)(t2) 0.64 0.05 0.01 0.03 0.05 0.05 0.03 0.16 0.12 0.01

a(4)(t2) 0.63 0.06 0.01 0.04 0.03 0.04 0.06 0.16 0.14 0.01

a(5)(t2) 0.58 0.06 0.01 0.03 0.06 0.02 0.03 0.14 0.19 0.01

When point charges were placed outside the clusters, the covalency changed. The largest
change was observed in the åkermanite model B, shown in table 3. The contribution of the O 2p
orbitals to a′

(3)(t2) was reduced compared to that obtained from model A. This is related to the
fact that the width of the O 2p valence band in figure 3(b) was wider than the band in figure 3(a).
In all of the crystals, the Cr atoms in models B showed stronger ionic character than those in
models A, since the ligand O 2p orbitals were primarily attracted by the first-nearest-cation
point charges, and the Cr–O interactions were reduced. In the results of models C, we see that
the first-shell-cation orbitals also contributed to the impurity-level MOs, and further reduced
the contribution of the Cr 3d orbitals. These changes in the covalency are expected to affect the
polarization dependence of the calculated absorption spectra. In every crystal, the magnitude
of the contribution of the Cr 3d orbitals tended to decrease in the following order of models:
B > A > C.

In the forsterite model C, the Mg 3s, Mg 3p, and Mg 3d orbitals further reduced the
contribution of the Cr 3d orbitals; on the other hand, the Si 3s, Si 3p, and Si 3d orbitals
made only negligible contributions to the impurity-level MOs. This is because the SiO4

coordination tetrahedra did not directly make contact with the CrO4 tetrahedron, whereas the
Mg atoms shared the ligand O atoms with the Cr atom. From this result, we conclude that
the wave functions of the impurity levels spread beyond the ligand O atoms, and the furthest
effective spatial region was the first-shell-cation coordination polyhedra. The same conclusion
had been derived also from the calculations on Cr4+:YAG [18]. In the result obtained from
the YSO model C in table 4, a large contribution of the Y 4d orbitals to the impurity-level
MOs originating from the t2 symmetry was observed. The contribution was an order of
magnitude larger than that obtained from the calculations on Cr4+:YAG, which also contained
Y atoms. We consider that the calculated contribution of the Y 4d orbitals in the YSO was
rather overestimated, and this is ascribable to the neglect of the lattice relaxation around the Cr
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atom. Since the energy positions of the impurity levels were highly overestimated, the levels
came closer to the Y 4d levels, which produced a strong interaction with the Cr 3d orbitals.
Since the accuracy requirement in the geometry optimization for the multiplet calculation,
which is not a general one-electron calculation, is severe for any computational code, we left
the problem of the lattice relaxation untouched in this study.

3.2. Multiplet structure calculation

3.2.1. The CDC and CIC approaches. In this subsection, we discuss the technical aspects
of the method. We compare the results obtained by the CDC and the CIC approaches.
We show here that the essence of the discussion in the next subsection based on the CIC
approach with a scaling factor is the same as for the CDC approach without such a factor. The
calculated multiplet energies and the transition probabilities (theoretical absorption spectra)
obtained from the forsterite models C by the CDC and the CIC approaches are shown in
figures 7(a) and 7(b), respectively. The calculated multiplet energies are shown as straight
lines, classified into the singlet states (upper) and the triplet states (lower). The ground state
was set at zero. The states were taken up to 35 000 cm−1. The multiplet-term symbols
within a parent Td symmetry were attached to the states. The triplet terms included the
3A2 term in the ground-state electron configuration (e2), the 3T2 and 3T1 terms in the one-
electron-excitation electron configuration (et2), and another 3T1 term in the two-electron-
excitation electron configuration (t2

2). For the triplet terms, the symmetries of the states in
the exact Cs symmetry, A′ and A′′, were also attached. The ground state was 3A′′, and we

E // a

E // c
E // b

E // a

E // c
E // b

0 5 10 15 20 25 30 35

1E(e2) 1T2,1T1(et2)1A1(e2)

3A2(e2) 3T2(et2) 3T1(et2) 3T1(t22)
3A”(1) 3A’(2) 3A’(3) 3A”(4)3A’(5)3A”(6) 3A”(7)3A’(8) 3A”(9)

1T2,1E(t22)
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1T2,1E(t22)

3A”(0)

(a)

0 5 10 15 20 25 30 35
Wave number (×103 cm–1)

Figure 7. The calculated multiplet energies (upper) and the theoretical absorption spectra (below),
obtained from the forsterite models C, (a) by the CDC approach, and (b) by the CIC approach.
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denoted it as 3A′′
(0)[

3A2(e2)] to show the origin in the parent Td symmetry and the electron
configuration. The nine excited triplet states were numbered in order of their energies, and were
denoted as 3A′′

(1)[
3T2(et2)], 3A′

(2)[
3T2(et2)], 3A′

(3)[
3T2(et2)], 3A′′

(4)[
3T1(et2)], 3A′

(5)[
3T1(et2)],

3A′′
(6)[

3T1(et2)], 3A′′
(7)[

3T1(t2
2)], 3A′

(8)[
3T1(t2

2)], and 3A′′
(9)[

3T1(t2
2)]. For the lowest field in

figures 7(a) and 7(b), the theoretical absorption spectra are depicted. The theoretical spectra
were obtained from equation (9), where the initial state was the ground state, and the final state
was all the excited triplet states. The relative height of the spectra was preserved through-
out the figures, and can be compared between them. The theoretical spectra showed polar-
ization dependence, which is indicated by the different types of line. As an example, E ‖ a

polarization means that the electric vector of the incident light is parallel to the crystallographic
a-axis.

The substantial difference between the results obtained by the CDC and the CIC approaches
lay in the mean energy of each multiplet term. In the CDC approach, the calculated effective
ligand-field splitting, expressed by equation (5), was estimated to be larger than it should
be, due to the neglect of the lattice relaxation. On the other hand, in the CIC approach,
we selected the scaling factor to reproduce the peak positions in the experimentally obtained
absorption spectrum (see figure 8(d)). So the energy difference between the mean energies of
the electron configurations, corresponding to the effective ligand-field splitting, was smaller
than that obtained by the CDC approach. As a result, the triplet states in the CIC approach
shifted toward lower energy. Still we see that the orders of the calculated symmetries of the
states, according to the energies, were the same as derived in the two approaches. This means
that the overall energy structures were qualitatively independent of the approaches applied.
Furthermore, the intensity ratio and the polarization dependence did not show any significant
changes between the two results. As long as we are discussing the relative positions of states,
the transition probability, and the polarization dependence, and not the absolute value of the
energy, the CDC and CIC approaches lead to the same conclusions in practice. In this study,
as we fixed the scaling factor at a constant, the discussion on the differences in the spectra
among the three crystals is not affected by the factor. Although we could base the subsequent
discussion on the results obtained by the ab initio CDC approach, we used the results obtained
by the CIC approach, to show the correspondence with the experimentally obtained spectra
also as regards the calculated energies. Hereafter, all discussion is based on the results obtained
by the CIC approach.

3.2.2. The multiplet energies and the transition probabilities of the silicate crystals.
The calculated multiplet energies and the theoretical spectra obtained from the forsterite,
åkermanite, and YSO models are shown in figures 8, 9, and 10, respectively. Parts (a), (b), and
(c) corresponded to the results obtained from models A, B, and C, respectively. Parts (d) are
the experimentally obtained absorption spectra taken from references [19–21], for comparison.
The calculated oscillator strengths of the transitions to the triplet states obtained from the
forsterite, åkermanite, and YSO models C are listed in tables 5, 6, and 7, respectively. In the
experimentally obtained spectrum of Cr4+:YSO in figure 10(d), only the E ‖ b polarization
has definitely been determined, as far as we know, in the literature. So the intensity ratios for
the other polarizations are actually uncertain, and we left the indications of the polarizations
as they were. However, we consider that the E ‖ n1 polarization was E ‖ c-like polarization,
from comparing the spectrum with the similar spectrum obtained by Koetke et al [22], who
determined only the c-axis. Thus we consider that the E ‖ n1 and E ‖ n3 polarizations were
E ‖ c-like and E ‖ a-like polarizations, respectively. In all of the spectra, we have shown the
details in the insets, where the range of the intensity was chosen arbitrarily for each one.
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Figure 8. (a)–(c) The calculated multiplet energies (upper) and the theoretical absorption spectra
(below and in insets) obtained from the forsterite models A, B, and C. (d) The experimentally
obtained absorption spectrum taken from reference [19].
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Figure 9. (a)–(c) The calculated multiplet energies (upper) and the theoretical absorption spectra
(below and in insets) obtained from the åkermanite models A, B, and C. (d) The experimentally
obtained absorption spectrum taken from reference [20].
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Figure 10. (a)–(c) The calculated multiplet energies (upper) and the theoretical absorption spectra
(below and in insets) obtained from the YSO models A, B, and C. (d) The experimentally obtained
absorption spectrum taken from reference [21]. The E ‖ n3 and E ‖ n1 polarizations were not
clearly defined in the literature.
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Table 5. The calculated oscillator strengths of spin-allowed transitions, obtained from the forsterite
model C.

State E ‖ a E ‖ b E ‖ c

3A′′
(1)[

3T2(et2)] 0 5.1 × 10−4

3A′
(2)[

3T2(et2)] 5.5 × 10−4

3A′
(3)[

3T2(et2)] 0
3A′′

(4)[
3T1(et2)] 3.1 × 10−4 1.1 × 10−2

3A′
(5)[

3T1(et2)] 1.3 × 10−2

3A′′
(6)[

3T1(et2)] 2.1 × 10−2 4.8 × 10−4

3A′′
(7)[

3T1(t2
2)] 1.8 × 10−3 2.7 × 10−4

3A′
(8)[

3T1(t2
2)] 3.5 × 10−3

3A′′
(9)[

3T1(t2
2)] 9.4 × 10−5 3.3 × 10−3

Table 6. The calculated oscillator strengths of spin-allowed transitions, obtained from the
åkermanite model C.

State E ⊥ c E ‖ c

3A′
(1)[

3T2(et2)] 2.0 × 10−4

3A′′
(2)[

3T2(et2)] 5.9 × 10−4

3A′
(3)[

3T2(et2)] 3.1 × 10−5

3A′′
(4)[

3T1(et2)] 8.4 × 10−3

3A′
(5)[

3T1(et2)] 9.4 × 10−3

3A′′
(6)[

3T1(et2)] 3.3 × 10−2

3A′′
(7)[

3T1(t2
2)] 5.1 × 10−5

3A′
(8)[

3T1(t2
2)] 1.9 × 10−3

3A′′
(9)[

3T1(t2
2)] 1.6 × 10−3

Table 7. The calculated oscillator strengths of spin-allowed transitions, obtained from the YSO
model C.

State E ‖ a E ‖ b E ‖ c

3A(1)[3T2(et2)] 0 1.3 × 10−4 1.3 × 10−4

3A(2)[3T2(et2)] 1.3 × 10−4 9.5 × 10−4 0
3A(3)[3T2(et2)] 1.3 × 10−5 1.3 × 10−3 4.6 × 10−3

3A(4)[3T1(et2)] 4.3 × 10−5 7.8 × 10−3 5.8 × 10−3

3A(5)[3T1(et2)] 2.2 × 10−3 1.5 × 10−2 1.6 × 10−2

3A(6)[3T1(et2)] 2.7 × 10−2 3.0 × 10−4 4.4 × 10−4

3A(7)[3T1(t2
2)] 7.8 × 10−3 4.6 × 10−4 5.7 × 10−5

3A(8)[3T1(t2
2)] 1.8 × 10−4 2.2 × 10−3 5.4 × 10−4

3A(9)[3T1(t2
2)] 3.7 × 10−4 4.1 × 10−4 7.5 × 10−4

First, we see that the overall structures of the experimentally obtained spectra were
reproduced by the theoretical ones. The strong peaks in the visible region originated from
the transitions to the states in the 3T1(et2) triplet term; on the other hand, the weak NIR
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peaks originated from the 3T2(et2) triplet term. From these results, we can confirm that the
apparent structures in the absorption spectra of the three Cr4+-doped silicate crystals originated
from the tetrahedrally coordinated Cr4+ state. The same structures were also obtained by
the CDC approach, although the energies were overestimated. As a rough estimate from
tables 5–7, the calculated magnitudes of the oscillator strengths of the transitions were about
1 × 10−4 for 3T2(et2) in the NIR region, and about 1 × 10−2 for 3T1(et2) in the visible region.
For Cr4+:Ca2GeO4, Hazenkamp et al experimentally deduced oscillator strengths of about
5 × 10−5 for 3T2(et2), and about 9 × 10−4 for 3T1(et2) [23]. We assume that the magnitudes
of the oscillator strengths do not strongly depend on the crystals. We find that the calculated
oscillator strengths are about an order of magnitude larger than those deduced experimentally.
In the experimental analysis, the effective concentration of the tetrahedrally coordinated Cr4+

was unknown. We ascribe the inconsistency to the error in the effective concentration assumed
by Hazenkamp et al. We consider that the effective concentration in their analysis should have
been an order of magnitude smaller than they assumed.

Cr4+:forsterite. The calculated multiplet energies in figure 8, obtained from the forsterite
models, show the large energy splittings originating from the twofold-degenerate (E) and
threefold-degenerate (T) parent multiplet terms. The overall structures of the triplet states
showed a good agreement with the experimentally obtained spectrum. The calculated energies
obtained from our three models and Hazenkamp’s semiempirical AOM calculation [23] are
listed in table 8, together with the experimentally obtained band maxima. We obtained the
energy splittings without using any adjustable parameters for them, unlike Hazenkamp et al.
In all of the results obtained from our models A, B, and C, the orders of the symmetries of the
states according to the energies were the same. And the order corresponds to that obtained
by the semiempirical AOM calculation. Thus we conclude that the spectral assignment for
the triplet states obtained by Hazenkamp et al was likely to be correct. Since the order of
the symmetries was unchanged among our three models, we consider that it is determined by
the distortion of the CrO4 tetrahedron from an exact tetrahedron, expressed by the smallest
model A. However, as regards the energy splitting of the 3T1(et2) triplet term, we find a better

Table 8. The calculated multiplet energies obtained from the forsterite models and Hazenkamp’s
semiempirical AOM calculation, and the experimentally obtained band maxima (in cm−1).

State Model A Model B Model C AOM calculationa Experimenta

3A′′
(1)[

3T2(et2)] 9426 10608 9702 9396 9150
3A′

(2)[
3T2(et2)] 9927 10907 9772 9530 9820

3A′
(3)[

3T2(et2)] 10351 11588 10504 10516 11500
3A′′

(4)[
3T1(et2)] 13525 14483 13507 13631 13600

3A′
(5)[

3T1(et2)] 14015 15671 14280 14393 15100
3A′′

(6)[
3T1(et2)] 16733 17811 16700 17483 17460

3A′′
(7)[

3T1(t2
2)] 22241 24778 22650

3A′
(8)[

3T1(t2
2)] 23356 24874 23204 23786 22700

3A′′
(9)[

3T1(t2
2)] 24082 25855 23956

1A′′[1E(e2)] 7902 7857 7919 8810
1A′[1E(e2)] 8087 8041 8028 8812
1A′[1A1(e2)] 14014 14106 14057 14858 15240

a Reference [23].
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agreement with the experimental result in the results obtained from models B and C than in
those from model A. This is related to the fact that the impurity-level MOs of model A showed
a different structure from those of models B and C.

As we directly constructed many-electron wave functions, we can also discuss the
transition probability and its polarization dependence. The polarization dependence of the
transitions from the 3A′′

(0)[
3A2(e2)] ground state to the three excited states in the 3T1(et2) triplet

term was consistent among the three models, and agreed with the polarization dependence of
the experimentally obtained spectrum: E ‖ b, E ‖ c, and E ‖ a, in order of the energies.
Also the polarization dependence of the 3T2(et2) triplet term in the NIR region agreed with
the experimentally obtained one. The spectra for the E ‖ b and E ‖ c polarizations possessed
apparent peaks at about 10 000 cm−1, whereas the spectrum for the E ‖ a polarization had
no peak, as shown in the insets. We confirmed that not only the peak energy but also the
polarization dependence of the peak intensity were reproduced, without using any adjustable
parameters to obtain them. As regards the states in the 3T1(t2

2) triplet term, Hazenkamp
et al mentioned two possibilities for the origin of the weak lines at about 18 000 cm−1 in
the spectra for the E ‖ b and E ‖ c polarizations. They said that the lines could have
originated from some 3A′′

(0)[
3A2(e2)] → 1T1(et2) spin-forbidden transitions or from the

3A′′
(0)[

3A2(e2)] → 3A′′
(7)[

3T1(t2
2)] spin-allowed transition. We consider from our results that the

possibility of the latter spin-allowed transition should be excluded, since the energy splitting
of the 3T1(t2

2) triplet term was not as large as that of the 3T1(et2) term, and it is unlikely that
the 3A′′

(7)[
3T1(t2

2)] state lay below 20 000 cm−1. On the other hand, the energies of the states in
the 1T2(et2) and 1T1(et2) singlet terms lay at around 18 000 cm−1. As the many-electron wave
functions of those states were composed of different Slater determinants with complex mixing,
we could not classify any state either only into the 1T2(et2) term or only into the 1T1(et2) term.
So we propose the possibility that Hazenkamp’s weak lines at about 18 000 cm−1 originated
from the transitions to the excited-singlet states originating from both the 1T2(et2) and 1T1(et2)

singlet terms.
The calculated intensity ratio for the 3T1(et2) triplet term got closer to the experimentally

obtained one as the size of the models became larger. We consider that, besides showing the
better agreement in the energy splitting, the largest model C was the most appropriate model
for reproducing the multiplet structure, although the difference between the models in this
(forsterite) case was rather small.

Cr4+:åkermanite. The calculated multiplet energies and the theoretical absorption spectra in
figure 9 obtained from the åkermanite models showed significant dependence on the size of
the models. Comparing the result for model A with the experimental one shown in figure 9(d),
we see that the calculated result reproduced the energy splitting of the 3T1(et2) triplet term.
However, the polarization dependence of the intensity was not adequately reproduced. In the
theoretical spectrum for the E ‖ c polarization, only the transition to the 3A′′

(6)[
3T1(et2)] state

had a transition probability, but the transitions to the other two states in the same 3T1(et2)

triplet term also had obvious transition probabilities in the experimentally obtained spectrum.
Furthermore, the transition probabilities for the transitions to the states in the 3T2(et2) triplet
term did not appear in the theoretical spectrum, in contrast to the case for the experimental
spectrum in the NIR region. The difference between the results from models A and B were
shown well in the insets. The calculated polarization dependence of model B came to agree
with the experimentally obtained one. The effective Madelung potential accounted for the
polarization dependence. When we focus on just the peak energy, we might be satisfied with
the results obtained from the simplest model A. Our results indicated, however, that such a
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simple model was no longer valid in this (åkermanite) case when we also took account of the
transition probability. As in the forsterite case, the practical difference between the results
of model B and the larger model C was small, although the covalency showed a difference.
However, we can see the tendency that the result of model B gave the energy splittings of
each of the multiplet terms as larger than those from model C. In model B, there was no space
other than the CrO4 tetrahedron to relax the difference in charge distribution, enhanced by
the effective Madelung potential. On the other hand, in model C, the enhanced difference in
charge distribution was relaxed by the first-shell cations, whose atomic orbitals mixed with the
ligand O 2p orbitals.

Cr4+:YSO. The calculated multiplet energies and the theoretical spectra obtained from the
YSO models are shown in figure 10. The calculated multiplet energies of the excited triplet
states and the peak energies obtained experimentally by Hömmerich et al [21] are summarized
in table 9. The low C1 symmetry produced energy splitting of every multiplet term. The
energies obtained from models A and B agreed well with the experimentally obtained peak
energies; on the other hand, the energies obtained from model C were rather overestimated.
We ascribe the overestimation in model C to the overestimation of the mixing of the Y 4d
orbital with the impurity-level MOs. Comparing with the results obtained from the forsterite
and åkermanite models in figures 8 and 9, we consider that the 3T2(et2) triplet term in YSO
had the largest energy splitting in the NIR region. The theoretical and the experimental spectra
showed polarization dependence, and the calculated intensity ratio depended on the model.
The intensity ratio obtained from model A differed from that obtained from model B. This
means that the effective Madelung potential in model B should not be neglected. The transition
probability of the transition to the 3A(6)[3T1(et2)] state was comparable to that of the transition
to the 3A(4)[3T1(et2)] and 3A(5)[3T1(et2)] states in the spectra obtained from models A and B.
On the other hand, the relative peak intensity related to the 3A(6)[3T1(et2)] state was increased
in the spectrum obtained from model C, making it closer to the experimentally obtained result.
Here again, we consider that the largest model C is required to reproduce the intensity ratio.
Including the wave functions of the first-shell-cation coordination polyhedra leads to better
reproduction of the ligand field for C1 symmetry. In previous semiempirical analyses, one
might have considered approximating the symmetry as Cs, not as the exact C1, to keep the
number of adjustable parameters small. When we consider the transition probability, however,
our result indicates that such a simplification is not a good approach.

Table 9. The calculated energies of the excited triplet states obtained from the YSO models, and
Hömmerich’s experimentally obtained peak energies (in cm−1).

State Model A Model B Model C Experimenta

3A(1)[3T2(et2)] 9031 9349 9698 9217
3A(2)[3T2(et2)] 10017 10505 11414 10929
3A(3)[3T2(et2)] 11310 11928 13407 12195
3A(4)[3T1(et2)] 13186 13728 14281 13333
3A(5)[3T1(et2)] 14401 15104 15989 14388
3A(6)[3T1(et2)] 16546 16531 18257 16807
3A(7)[3T1(t2

2)] 22202 22608 24250
3A(8)[3T1(t2

2)] 23252 24044 26769
3A(9)[3T1(t2

2)] 24444 25188 29339

a Reference [21].
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3.2.3. The relationship between the mixing of wave functions and the transition probability.
The analysed coefficients of the many-electron wave functions in equation (2) for the excited
triplet states obtained from the forsterite, åkermanite, and YSO models C are shown in tables
10, 11, and 12, respectively. The values were normalized to unity, and the missing elements
indicate zero. Every line in the tables means the composition of a state, and an off-diagonal
element indicates that the wave function is mixed with those of the other states. In all of the
results, the Slater determinants �1–�6 belonged to the et2 electron configuration; on the other
hand, the Slater determinants �7–�9 belonged to t2

2 electron configuration.

Table 10. The analysed coefficients Cij in the linear combination of Slater determinants �

(�1 = |a′′
(2)(e), a′

(3)(t2)|, �2 = |a′
(1)(e), a′′

(4)(t2)|, �3 = |a′
(1)(e), a′

(5)(t2)|, �4 = |a′
(1)(e), a′

(3)(t2)|,
�5 = |a′′

(2)(e), a′
(5)(t2)|, �6 = |a′′

(2)(e), a′′
(4)(t2)|, �7 = |a′

(3)(t2), a′′
(4)(t2)|, �8 = |a′

(3)(t2), a′
(5)(t2)|,

�9 = |a′′
(4)(t2), a′

(5)(t2)|, where |ϕ1, ϕ2| = (1/
√

2){ϕ1(r1)ϕ2(r2) − ϕ2(r1)ϕ1(r2)}) in equation
(2), obtained from the forsterite model C.

(et2) (t2
2)

State  �1 �4 �6 �2 �3 �5 �9 �8 �7

3T2(et2) 3A′′
(1) 0.71 0.13 0.14

3A′
(2) 0.72 0.12 0.14

3A′
(3) 0.52 0.48

3T1(et2) 3A′′
(4) 0.24 0.46 0.20 0.10

3A′
(5) 0.23 0.30 0.33 0.14

3A′′
(6) 0.01 0.33 0.56 0.09 0.01

3T1(t2
2) 3A′′

(7) 0.02 0.07 0.85 0.05
3A′

(8) 0.05 0.04 0.05 0.86
3A′′

(9) 0.04 0.04 0.02 0.05 0.85

Garrett et al pointed out that the absorption spectra of the Cr4+-doped forsterite and
åkermanite showed a difference in polarization dependence, although the Cr sites in the two
crystals possessed the same Cs symmetry [20]. In forsterite, the strongest peak in the visible
region had E ‖ a polarization, and the NIR region had different E ‖ b or E ‖ c polarizations.
For åkermanite, on the other hand, the strongest peaks in the visible and the NIR regions had
the same E ‖ c polarization, which corresponded to the E ‖ a polarization in forsterite. We
found evidence for the difference in tables 10 and 11. In the tables, the states obtained from the
forsterite and åkermanite models were classified into two groups, according to their symmetries.
In forsterite, the 3A′ states were composed of the Slater determinants �3, �4, �6, and �8;
on the other hand, the 3A′′ states were composed of �1, �2, �5, �7, and �9. In åkermanite,
the 3A′ states were composed of �1, �3, �6, and �7; on the other hand, the 3A′′ states were
composed of �2, �4, �5, �8, and �9. In general, transition from the 3A2 state to 3T2(et2) state
in Td symmetry is electric dipole forbidden. However, some transitions become allowed when
the states in the 3T2(et2) triplet term split and mix with the states in the 3T1(et2) triplet term,
under the reduced symmetry. In the results from the forsterite model, the 3A′′

(6)[
3T1(et2)] state

contained no apparent contribution from the Slater determinants �1 and �4, which were the
primary components of the 3A′′

(1)[
3T2(et2)] and the 3A′

(2)[
3T2(et2)] states, respectively. This

absence of interaction is related to the fact that the polarizations of the strongest peak in the
visible region and the apparent peaks in the NIR region could differ from each other. In the
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Table 11. The analysed coefficients Cij in the linear combination of Slater determinants �

(�1 = |a′
(2)(e), a′

(3)(t2)|, �2 = |a′′
(1)(e), a′

(4)(t2)|, �3 = |a′′
(1)(e), a′′

(5)(t2)|, �4 = |a′′
(1)(e), a′

(3)(t2)|,
�5 = |a′

(2)(e), a′′
(5)(t2)|, �6 = |a′

(2)(e), a′
(4)(t2)|, �7 = |a′

(3)(t2), a′
(4)(t2)|, �8 = |a′

(3)(t2), a′′
(5)(t2)|,

�9 = |a′
(4)(t2), a′′

(5)(t2)|, where |ϕ1, ϕ2| = (1/
√

2){ϕ1(r1)ϕ2(r2) − ϕ2(r1)ϕ1(r2)}) in equation
(2), obtained from the åkermanite model C.

(et2) (t2
2)

State  �1 �4 �3 �2 �6 �5 �8 �7 �9

3T2(et2) 3A′
(1) 0.78 0.14 0.07

3A′′
(2) 0.44 0.41 0.15

3A′
(3) 0.02 0.59 0.39

3T1(et2) 3A′′
(4) 0.21 0.55 0.19 0.05

3A′
(5) 0.17 0.25 0.49 0.09

3A′′
(6) 0.34 . 0.01 0.63 0.01

3T1(t2
2) 3A′′

(7) 0.01 0.98
3A′

(8) 0.03 0.02 0.04 0.91
3A′′

(9) 0.01 0.03 0.02 0.94

Table 12. The analysed coefficients Cij in the linear combination of Slater determinants �

(�1 = |a(2)(e), a(3)(t2)|, �2 = |a(1)(e), a(4)(t2)|, �3 = |a(1)(e), a(5)(t2)|, �4 = |a(1)(e), a(3)(t2)|,
�5 = |a(2)(e), a(5)(t2)|, �6 = |a(2)(e), a(4)(t2)|, �7 = |a(3)(t2), a(4)(t2)|, �8 = |a(3)(t2), a(5)(t2)|,
�9 = |a(4)(t2), a(5)(t2)|, where |ϕ1, ϕ2| = (1/

√
2){ϕ1(r1)ϕ2(r2) − ϕ2(r1)ϕ1(r2)}) in equation

(2), obtained from the YSO model C.

(et2) (t2
2)

State  �1 �6 �3 �4 �2 �5 �7 �8 �9

3T2(et2) 3A(1) 0.70 0.08 0.02 0.16 0.01 0.02
3A(2) 0.04 0.47 0.03 0.43 0.03
3A(3) 0.10 0.75 0.07 0.07 0.01

3T1(et2) 3A(4) 0.03 0.17 0.07 0.66 0.02 0.02 0.01 0.01 0.01
3A(5) 0.09 0.25 0.15 0.04 0.41 0.02 0.02 0.01
3A(6) 0.03 0.01 0.03 0.76 0.14 0.02 0.01

3T1(t2
2) 3A(7) 0.01 0.17 0.67 0.03 0.11

3A(8) 0.02 0.03 0.10 0.71 0.13
3A(9) 0.02 0.06 0.21 0.71

theoretical spectrum in figure 8(c), we see that the strongest peak in the visible region had E ‖ a

polarization, corresponding to the 3A′′
(6)[

3T1(et2)] state. On the other hand, the apparent peaks
in the NIR region had either E ‖ b or E ‖ c polarization, corresponding to the 3A′′

(1)[
3T2(et2)]

and 3A′
(2)[

3T2(et2)] states, respectively. Those results reproduced the experimentally obtained
result. In the theoretical spectrum obtained from the åkermanite model in figure 9(c), the
polarizations of the strongest peak in the visible region corresponding to the 3A′′

(6)[
3T1(et2)]
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state, and the primary peak in the NIR region corresponding to the 3A′′
(2)[

3T2(et2)] state, were
for the same E ‖ c polarization. The results agreed with the experimental one. In the analysed
results in table 11, we see that the 3A′′

(6)[
3T1(et2)] state contained a large contribution from the

Slater determinant �4, which was the primary component of the 3A′′
(2)[

3T2(et2)] state. This
interaction means that the transition to the 3A′′

(6)[
3T1(et2)] state gave its transition probability to

the transition to the 3A′′
(2)[

3T2(et2)] state, and the two transitions had the transition probabilities
for the same polarization.

In the result obtained from the YSO model C in table 12, we see that the many-electron
wave functions of the triplet states were mixed with each other in a complex fashion, since the
Cr site had the lowest C1 symmetry. We could not extract any approximate matrix elements in
a hypothetical higher symmetry, including Cs symmetry. We consider that this mixing under
the C1 symmetry is required when we consider the intensity ratio in the spectrum.

The transition probability of the transitions to the states in the 3T1(t2
2) triplet term is solely

derived from the mixing of the wave functions with those of the states in the et2 electron
configuration, since the two-electron excitation is originally forbidden. So the mixing of
the wave functions of the states in the 3T1(t2

2) triplet term with those of the states in the
3T1(et2) triplet term produces the transition probability for the states in the 3T1(t2

2) term.
Comparing the analysed results in tables 10–12 and the theoretical spectra in figures 8–
10, we find good correspondences between the mixing of the wave functions and the peak
intensities for the states in the 3T1(t2

2) triplet term. The larger the mixing, the stronger the
corresponding peak. As regards Cr4+:forsterite, Hazenkamp et al proposed an assignment from
the experiments where the weak peak at 22 700 cm−1 for the E ‖ c polarization originated
from the 3A′′

(0)[
3A2(e2)] → 3A′

(8)[
3T1(t2

2)] transition. The theoretical spectrum in figure 8(c)
showed a peak at 23 204 cm−1 for the same E ‖ c polarization. The correspondence was good,
and Hazenkamp’s assignment is likely to be correct. Our calculated result further indicated
that additional peaks with the same magnitudes of the oscillator strengths should exist around
the same energy region also for E ‖ a and E ‖ b polarizations. Correspondingly, the three
diagonal elements relating to the 3T1(t2

2) triplet term were almost the same at 0.85. However,
the agreement with the experimentally obtained spectrum is uncertain.

3.2.4. The reduction of two-electron repulsion. In the DVME method, the covalency,
expressed by the proportions of the contribution of Cr 3d orbitals to impurity-level MOs,
and the correlation-correction factor C, introduced by equation (7), are the reduction factors
for the two-electron repulsion. Both of the factors are involved in equation (7), and are not
adjustable parameters.

First, we see the reduction caused by the covalency. When the covalency becomes large,
the effective spatial region where electrons move around spreads to reduce the repulsive energy
between the electrons. In figure 11, the relationship between the proportion of Cr 3d orbitals
and the two-electron integrals not multiplied by the factor C (=1) is plotted. In fact, the two-
electron integrals had 140 combinations with different values, but only the most representative
integrals, 〈ij |kl〉 = 〈11|11〉, 〈22|22〉, 〈33|33〉, 〈44|44〉, and 〈55|55〉, in equation (7) were
taken for simplicity. In the figure, not only the results obtained from models A, B, and C,
but also a result obtained from a free-Cr4+-ion model are shown. We find a good relationship
between the covalency and the two-electron repulsion. This means that the proportion of the
contribution of Cr 3d orbitals is a good parameter to use to simply evaluate the reduction caused
by the covalency in the two-electron repulsion. We find that the MOs originating from the t2
symmetry had larger covalency than the MOs originating from the e symmetry, and the two-
electron repulsion was correspondingly reduced. The magnitude of the two-electron repulsion
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Figure 11. The relationship between the proportions of the contribution of Cr 3d orbitals and the
two-electron integrals not multiplied by the correlation-correction factor C. The results A, B, and
C were obtained from models A, B, and C, respectively, and a result obtained from the free-ion
model is also shown.

in the models C being smaller than those in models A and B is ascribed to the participation of
the first-shell-cation orbitals. When the first-shell-cation orbitals join the impurity-level MOs,
the effective spatial region spreads, resulting in the reduction of the two-electron repulsion.
The free-Cr4+-ion model had no participation of orbitals other than the Cr 3d orbitals. The
calculated value of the two-electron integral in the free-ion model was 26.2 eV, which was
1.3–2.0 times larger than the values obtained from models A, B, and C with ligand atoms.

The calculated values of another reduction factor, the correlation-correction factor C, are
listed in table 13. Although the factor C can be originally calculated from first principles
as explained in the method section, we obtained the factor C by fixing �ε in equation (8)
at an average value, 0.93 eV, for simplicity, through the calculations for models A, B, and
C, but not the free-ion model. In models A, B, and C, we obtained values of the factor C

in the range 0.60–0.70. The dependence of the factor C on the crystal was small, and was
derived from the size of the models. We find a tendency for the magnitude of the factor C

to decrease in the order of models C > A > B. This order is an opposite order to that for
the magnitude of the proportions of the contribution of Cr 3d orbitals obtained in the previous
section. This means that the correlation-correction factor C acted as a compensator for the
reduction caused by the covalency, to keep the left-hand side of equation (8) constant. We
multiplied the average values of the proportions of the contribution of Cr 3d orbitals and the
correlation-correction factor C together, and the results are summarized in table 14. The
calculated values of the resulting reduction factor lay in a small range, 0.47–0.50. This means
that the resulting reduction factor is a good indicator with which to evaluate the reduction

Table 13. The calculated correlation-correction factor C, obtained from the forsterite, åkermanite,
YSO, and free-ion models.

Model Forsterite Åkermanite YSO Free ion

A 0.64 0.63 0.62
B 0.61 0.63 0.60 0.89
C 0.68 0.70 0.68
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Table 14. The (multiplied) reduction factor, obtained from the forsterite, åkermanite, and YSO
models.

Model Forsterite Åkermanite YSO

A 0.49 0.48 0.47
B 0.47 0.48 0.47
C 0.50 0.49 0.47

of two-electron repulsion, independently of the size of models. We had confirmed that the
corresponding values of the two-electron integrals multiplied by the factor C also lay within a
smaller range than the result in figure 11.

To consider the reduction of the two-electron repulsion directly, the values of the
representative two-electron integrals multiplied by the factor C obtained from models C and
the free-ion model are summarized in table 15. As mentioned before, we see good relationships
between the two-electron integrals and the covalency. Although the forsterite and åkermanite
possessed the same Cs symmetry, every integral had different values. In the traditional methods
based on the ligand-field theory, such a difference has been neglected by reducing the integrals
to just one Racah parameter B. Averaging the values of the two-electron integrals obtained
from our models C, we obtained 11.3 eV as the value for solids. On the other hand, the value
from the free-ion model was 23.2 eV. Accordingly, the ratio of the two-electron integrals in the
ligand field to the free-ion value was 0.49. This ratio corresponds in meaning to the so-called
nephelauxetic parameter, which is the ratio of the Racah parameter B for solids to the free-ion
value. Many years ago, Jia et al reported a value of the Racah parameter B, 860 cm−1, for
Cr4+ in forsterite, derived from very simple semiempirical analysis using the Tanabe–Sugano
diagram [16]. Since the Racah parameter of the free Cr4+ ion was reported as 1015 cm−1 [24],
the Jia et al nephelauxetic parameter was 0.85. Later, Hazenkamp et al obtained a much
smaller value of the Racah parameter B, 555 cm−1, by an AOM calculation, and the value
corresponded to the value of the nephelauxetic parameter 0.55 [23]. Although Jia et al and
Hazenkamp et al determined those parameters by depending on the same assignment for the
triplet states, their assumptions concerning the positions of the singlet states differed from
each other, and they gave values of different magnitudes. Hazenkamp et al also obtained a
value of the Racah parameter B of 540 cm−1 for Cr4+ in Ca2GeO4, which corresponds to the
value of the nephelauxetic parameter 0.53. Reinen et al reported a similar small value, 0.47,
from a similar AOM calculation [25]. For Cr4+-doped Y3Al5O12 (YAG), Eilers et al, Brik and
Shchekoldin, and Riley et al independently obtained values of the Racah parameter B also by
semiempirical analyses, and their nephelauxetic parameters lay in the range 0.42–0.51 [26–28].

Table 15. Representative two-electron integrals multiplied by the correlation-correction factor C,
obtained from the forsterite, åkermanite, and YSO models C, and the free-ion model.

〈ij |kl〉 Forsterite Åkermanite YSO Free ion

〈11|11〉 12.6 13.0 12.4

〈22|22〉 12.7 12.7 12.4

〈33|33〉 11.0 10.8 10.1

〈44|44〉 11.2 10.4 9.8

〈55|55〉 11.4 10.7 8.9

Average 11.8 11.5 10.7 23.2
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Our ratio 0.49 proves the invalidity of the large value of the nephelauxetic parameter proposed
by Jia et al. We support the values at around 0.49 proposed by the others as having reasonable
magnitudes. We have to stress, however, that the traditional nephelauxetic parameter is a very
simple parameter based on an averaged single parameter for two-electron integrals. We stress
also that reduction of the number of parameters is not appropriate, especially when discussing
the transition probability.

4. Summary

The multiplet energies and the transition probabilities of tetrahedrally coordinated Cr4+ in
the three silicate crystals forsterite, åkermanite, and YSO were calculated by the electronic
structure calculation method, independently of ligand-field theory. The overall structures in the
absorption spectra were reproduced, and that means that the structures were mainly produced
by the tetrahedrally coordinated Cr4+. The polarization dependence of the transition probability
was reproduced well by the largest models with the first-shell-cation coordination polyhedra.
The importance of the wave functions of the atoms outside the nearest ligand atoms indicates
that the method will be applicable to examinations of electronic structures not only of single-
ion systems but also of ion-pair systems and ion–vacancy systems. The ratio corresponding to
the traditional nephelauxetic parameter was obtained as 0.49. The magnitudes of some values
given recently in the literature were judged to be reasonable.
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